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Abstract

Non-syndromic congenital heart defects (CHDs) develop during embryogenesis as a result of a 

complex interplay between environmental exposures, genetics and epigenetic causes. Genetic 

factors associated with CHDs may be attributed to either independent effects of maternal or fetal 

genes, or the inter-generational interactions between maternal and fetal genes. Detecting gene-by-

gene interactions underlying complex diseases is a major challenge in genetic research. Detecting 

maternal-fetal genotype (MFG) interactions and differentiating them from the maternal/fetal main 

effects has presented additional statistical challenges due to correlations between maternal and 

fetal genomes. Traditionally, genetic variants are tested separately for maternal/fetal main effects 

and MFG interactions on a single-locus basis. We conducted a haplotype-based analysis with a 

penalized logistic regression framework to dissect the genetic effect associated with the 

development of non-syndromic conotruncal heart defects (CTD). Our method allows simultaneous 

model selection and effect estimation, providing a unified framework to differentiate maternal/

fetal main effect from the MFG interaction effect. In addition, the method is able to test multiple 

highly linked SNPs simultaneously with a configuration of haplotypes, which reduces the data 

dimensionality and the burden of multiple testing. By analyzing a dataset from the National Birth 

Defects Prevention Study (NBDPS), we identified seven genes (GSTA1, SOD2, MTRR, AHCYL2, 

GCLC, GSTM3 and RFC1) associated with the development of CTDs. Our findings suggest that 

MFG interactions between haplotypes in 3 of 7 genes, GCLC, GSTM3 and RFC1, are associated 

with non-syndromic conotruncal heart defects.
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1. INTRODUCTION

Genetic interactions, or epistatic effects, are believed to exist pervasively in biological 

pathways [Moore 2003]. Maternal-fetal genotype (MFG) interaction is a particular type of 

interaction, which occurs when an MFG combination jointly alters the phenotype or risk of 

disease in offspring. A well-known example of an MFG interaction is Rh incompatibility 

[Kulich and Kout 1967]. The Rh locus on chromosome 1p35 is bi-allelic with a null allele 

and a coding allele. Individuals homozygous for the null allele are Rh-negative, while those 

with a coding allele are Rh-positive. Rh incompatibility occurs between an Rh-negative 

mother and her Rh-positive fetus, because the mother can produce immune antibodies to the 

Rh antigens on the fetal red blood cells at birth, leading to Rh isoimmunization. Rh 

isoimmunization may have severe adverse effects, including anemia, hyperbilirubinemia, 

fetal hydrops and adverse fetal neurodevelopment [van Gent, et al. 1997]. Over the past 

decade, evidence has accumulated demonstrating that MFG interactions may be a common 

mechanism for various complex human diseases and birth defects, such as neural tube 

defects [Relton, et al. 2004], schizophrenia [Palmer, et al. 2002] and autism [Zandi, et al. 

2006]. Discovering and characterizing MFG interactions will contribute significantly to 

increasing our understanding of the etiology of birth defects and improving both maternal 

and fetal health.

Congenital heart defects (CHDs) are the most common type of birth defect with an 

estimated incidence of 6–8 per 1,000 live births [Hoffman and Kaplan 2002]. We and others, 

using candidate gene and pathway studies have identified maternal and fetal genetic 

susceptibilities that are associated with CHDs [Goldmuntz, et al. 2008; Hobbs, et al. 2011; 

Wessels and Willems 2010]. Though it is natural to wonder how pervasively MFG 

interactions exist, and how many possible interactive mechanisms there are [Sinsheimer, et 

al. 2010], relatively few studies have been conducted to detect the MFG interaction in regard 

to the development of CHDs [Lupo, et al. 2010].

Congenital heart defects are classified into various subgroups. Conotruncal heart defects 

(CTDs), a large subgroup of CHD, includes truncus arteriosus, transposition of the great 

arteries, double outlet right ventricle, tetralogy of fallot, pulmonary atresia, malalignment 

ventricle septal defect, and interrupted aortic arch. CTDs are among the most common and 

severe birth defects worldwide. Although survival of infants with CTDs has increased 

significantly over the last few decades, both mortality and morbidity remain high for these 

affected infants [van der Linde, et al. 2011]. Understanding the genetic mechanism 

underlying CTDs is of great importance to reduce morbidity and mortality related to these 

defects.

A potential difficulty encountered when evaluating the impact of genotypes from mother-

offspring pairs is the correlation between maternal and fetal genotypes. Independent 

analyses of maternal or fetal effects are likely to confound each other, such that a single 

model that simultaneously includes both maternal and fetal effects is preferred [Shi, et al. 

2008]. In pioneering work, a log-linear model was proposed to differentiate fetal genetic 

effects from maternally mediated genetic effects [Umbach and Weinberg 2000; Weinberg, et 

al. 1998; Wilcox, et al. 1998]. Since then, a number of methods have been proposed to 
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investigate the possible MFG interaction effect by extending the log-linear model 

[Ainsworth, et al. 2011; Childs, et al. 2010; Sinsheimer, et al. 2003]. These log-linear-based 

methods typically divided family samples into different strata by their parental mating 

genotype combinations, and model the number of cases and controls in each stratum 

assuming a Poisson distribution. The maternal effects, fetal effects and MFG interaction 

effects can be specified by various parameters, which are further estimated by maximizing 

the likelihood function. These proposed methods have been useful tools for association 

studies with mother-offspring genotype data. Because the fetal effect is estimated 

conditionally on parental genotypes, it is robust to population stratification.

Recently, we and others proposed a penalized logistic regression approach to detect single 

SNP-SNP interactions and two-SNP haplotype-haplotype interactions [Li, et al. 2010; Li, et 

al. 2009]. Our method utilized Least Absolute Shrinkage and Selection Operator (LASSO), a 

machine learning technique that allows simultaneous effect estimation and variable 

selection. In this article, we extend our previously developed method to detect multi-SNP 

haplotype-haplotype interactions in the context of mother-offspring pair data. Our proposed 

method has several appealing properties. First, the LASSO estimator provides an automatic 

inference for the underlying genetic mechanisms. No individual test is required to 

differentiate maternal, fetal and MFG interaction effect. Second, the proposed method is 

nested with a haplotype phasing strategy, which simultaneously handles multiple SNPs that 

are in Linkage Disequilibrium (LD). Such a haplotype analysis strategy may potentially 

yield more information than single SNPs alone [Wang, et al. 2012], and reduce the burden 

of multiple testing. In this study, we applied the proposed method to dissect the maternal, 

fetal and MFG interaction effect associated with CTDs using genetic data from a candidate 

gene study. We identified a number of haplotype blocks with potential association to CTD, 

and adjusted for multiple testing by the number of blocks instead of number of SNPs. 

Finally, we explore the possible mechanisms in regard to the MFG combinations that jointly 

alter the disease risk.

2. METHODS

2.1 Study Population

The dataset was part of the National Birth Defects Prevention Study (NBDPS), a large-scale 

case control study covering an annual birth population of 482,000, or 10% of U.S. births. 

CTD cases were ascertained from birth defect registries in ten participating states that had 

identical inclusion criteria: Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, 

New York, North Carolina, Texas, and Utah. All offspring, including both cases and 

controls, were born between 1997 and 2010. A detailed description of NBDPS methods have 

previously been published [Gallagher, et al. 2011; Rasmussen, et al. 2002; Yoon, et al. 

2001]. In this study, we included all available genotyped mother-offspring pairs, including 

331 case pairs and 875 control pairs. Case pairs were defined as those where the child had a 

conontruncal heart structural malformation, whereas control pairs were defined as those 

where the child did not have any structural birth defect. Maternal characteristics were 

similar between cases and controls (Table I).
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2.2 Genotyping and Quality Control

Our research team commissioned a custom panel of 1,536 SNPs covering 62 genes in the 

homocysteine, folate, and transsulfuration pathways potentially related to the development 

of CHD, using the Illumina GoldenGate custom genotyping platform, as described by 

Chowdhury et al. [Chowdhury, et al. 2012]. The whole genome amplified DNA was used 

for genotyping. Initial genotype calls were generated using GenCall, Illumina’s proprietary 

algorithm, with subsequent analysis performed using SNPMClust, a bivariate Gaussian 

model-based genotype clustering and calling algorithm developed in-house. To ensure high-

quality genotypes, we applied stringent quality control measures and excluded SNPs with 

obviously poor clustering behavior (60 SNPs), no-call rates > 10% (328 SNPs), Mendelian 

error rates > 5% (11 SNPs), minor allele frequencies < 5% (204 SNPs), or significant 

deviation from Hardy-Weinberg Equilibrium in at least one racial group (p < 10e-4, 12 

SNPs). After genotyping and subsequent quality control checks, genotyping data was 

available for 921 bi-allelic SNPs in 60 candidate genes for each mother-child pair.

2.3 Determination of Haplotype Blocks

The haplotype blocks were phased by using software Haploview version 4.2 [Barrett, et al. 

2005]. Linkage Disequilibrium (LD) was first measured by the D′ statistic between two 

neighboring genetic variants. The Solid Spine of LD criterion, an internally developed 

method by Haploveiw, was further used to determine the haplotype blocks by using a 

threshold of D′ > 0.6. After applying Haploview, a total number of 112 haplotype blocks 

were identified for association analysis.

2.4 Statistical Method

We previously proposed a penalized logistic regression approach to detect two-SNP 

haplotype-haplotype interactions [Li, et al. 2010], and through simulations showed that the 

method has a low false positive rate and reasonable power for detecting haplotype-haplotype 

interactions. In this article, we briefly explain our method in the context of a flexible number 

of SNPs, more theoretical details can be found elsewhere [Cui, et al. 2007; Li, et al. 2010].

Assume we have a study population of n mother-offspring pairs, with n1 case pairs and n0 

control pairs (n = n1 + n0). Denote yi as the disease status for the i-th mother-offspring pair; 

yi = 1 for case and yi = 0 for control. Suppose we are interested in a particular haplotype 

block with K bi-allelic loci that are in LD. Two alleles at the k-th locus may form three 

possible genotypes, denoted as AkAk, AkBk and BkBk ; 1 ≤ k ≤ K.

Mapping Composite Diplotypes—Without loss of generality, denote H=[A1A2 ……

AK] as a “risk” haplotype that may alter the likelihood of disease. The K-locus genotype 

within the haplotype block can then be mapped into three possible composite diplotypes, 

namely HH, HH̅ and H̅H̅; where H̅ represents all haplotypes that are different from the 

“risk” haplotype H. The haplotype block may have a large number of multi-locus genotypes 

(i.e. up to 3K). However, the number of composite diplotypes is always reduced to three 

after the haplotype configuration, which significantly lessens data dimensionality. It is 

worthwhile to note that a “risk” haplotype is defined here for the purpose of dimension 

reduction. In practice, a “risk” haplotype may have a protective effect that corresponds to a 
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lower likelihood of disease. Such a modeling strategy was also adopted in previous studies 

[Lin, et al. 2007; Liu, et al. 2004; Liu, et al. 2011; Zhang, et al. 2012]. A potential challenge 

for the diplotype mapping is phase-ambiguity. The phase-ambiguous genotypes were treated 

as missing data, and phase determined probabilistically via an expectation-maximization 

(EM) algorithm described below.

In practice, every haplotype with an appreciable frequency (e.g. greater than 5%) may serve 

as a potential “risk” haplotype. Different choices of “risk” haplotypes would lead to various 

mapping strategies for composite diplotypes. The haplotype that gives the best model fit 

(minimum BIC statistic described below) will be selected as the optimal “risk” haplotype.

Epistasis Model—Denote the composite diplotypes for the i-th mother-offspring pair as 

Gi,m for the mother’s diplotype and Gi,f for the fetus’s diplotype. We use a logistic 

regression framework to model the genetic effects of the maternal block, the fetal block and 

their possible interactions:

Eq. 

(1)

and xi,f and zi,f are similarly defined. This coding strategy follows Cockerham’s orthogonal 

partition method [Cockerham 1954; Kao and Zeng 2002] where am(f) and dm(f) can be 

interpreted as the additive and dominance effects for the risk haplotype at a maternal (fetal) 

block; iaa, iad, ida, and idd can be interpreted as the additive × additive, additive × 

dominance, dominance × additive, and dominance × dominance interaction effect between 

the maternal and fetal blocks, respectively.

The coefficients of genetic effect, β = (am,af,dm,df, iaa, iad, ida, idd), are estimated by 

minimizing the −2 times log-likelihood with an adaptive LASSO penalty.

Eq. (2)

Where L is the log-likelihood; λ is a tuning parameter between the likelihood and penalty 

term, and is chosen to minimize Bayesian Information Criterion (BIC); ωj is a weight 

corresponding to the j-th genetic effect, 1 ≤ j ≤ 8, and is chosen as the j-th component of 1/

βMLE; where βMLE is the maximum likelihood estimate of β. Previous studies have shown 

that the coefficients estimated using this adaptive LASSO are consistent and thus 

asymptotically converge to their true values [Zou 2006].

MFG combinations and Likelihood Function—For simplicity, we first assume that all 

multi-locus genotypes are phase-known, and each can be mapped to a unique composite 

diplotype. Consistent with Mendelian transmission, seven maternal-fetal genotypes (MFG) 

combinations may be formed and numerically denoted as 11, 12, 21, 22, 23, 32, 33 (Table 
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II). Further, for each MFG combination, a likelihood function can be calculated according to 

the logistic regression model in Eq. (1). For example, if the i-th mother-offspring pair has 

MFG=11 (i.e. Gi,m = HH and Gi,f = HH), its likelihood of being a case pair is:

Eq. (3)

and its likelihood of being a control pair is:

The likelihood for other MFG combinations can be calculated.

If the multi-locus genotype Gi,m and Gi,f is phase-ambiguous, then it will map to two 

possible composite diplotypes, HH̅ or H̅H̅. To construct the likelihood function in Eq. (2), 

we define a set of indicator variables for MFG combinations as:

Di,12, Di,21, Di,22, Di,23, Di,32, and Di,33 can be defined similarly. Then the likelihood 

function in Eq. (2) takes the following form:

Because of phase-ambiguity, the indicators, Di,11…Di,33, are treated as missing data, and the 

likelihood function above is maximized iteratively with an EM algorithm. The 

computational details can be found in Li et al. [Li, et al. 2010].

After the coefficients are estimated, the likelihood of being a case pair can be computed for 

each MFG combination. It should be noted that the adaptive LASSO simultaneously 

estimates parameters and performs model selection through shrinkage. Coefficients that do 

not significantly differ from 0 are expected to be shrunk to 0. As a result, some of the MFG 
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combinations may have the same likelihood of disease. Given a simple example when the 

maternal additive effect is the only no-zero coefficient (e.g. am ≠ 0,dm = af = df = iaa = iad = 

ida = idd = 0), the MFG combinations in the same row of Table II would have the same 

likelihood of disease. According to Eq. (3), the 7 maternal/fetal genotype combinations can 

be partitioned into 3 risk groups:

R1 = {H̅H̅ / HH̅; H̅H̅ / H̅H̅} with a likelihood of disease as ;

R2 = {HH̅ / HH̅; HH̅ / HH̅; HH ̅ / H̅H̅} with a likelihood of disease as ;

R3 = {HH / HH; HH / HH̅} with a likelihood of disease as .

When the coefficient am is positive, group R1 would have the lowest likelihood of disease 

and can be denoted as a reference group. Compared to group R1, group R2 and R3 would 

have increased risks of disease with odds ratios (OR) of exp(am) and exp(2am), respectively. 

Standard errors and thus confidence intervals for the OR are computed using bootstrap 

resampling [Tibshirani 1996]. Partitioning of risk groups with other non-zero coefficients 

can be obtained in a similar fashion and are not detailed here.

3. RESULTS

Using Haploview, we identified 112 haplotype blocks for analysis [Barrett, et al. 2005]. 

Within each block, all haplotypes with a frequency greater than 5% were examined as 

potential “risk” haplotypes, and the haplotype with a minimum BIC was selected as the 

optimal “risk” haplotype. Application of our method identified 7 haplotype blocks with non-

zero coefficients, indicating a potentially significant genotype-phenotype association. The 

identified blocks were located in 7 genes: GSTA1, GCLC, SOD2, GSTM3, MTRR, AHCYL2 

and RFC1. Information for the identified haplotypes is summarized in Table III. The 

frequencies of “risk” haplotypes were estimated based on the entire study population, 

including both cases and controls.

The LASSO estimator provides a direct inference of the underlying genetic mechanism. 

Based on the non-zero coefficients, the 7 identified blocks fell into three possible categories: 

maternal main effect (i.e. am,dm ≠ 0), fetal main effect (af,df ≠ 0), or MFG interaction effect 

(i.e. iaa, iad, ida, idd ≠ 0). To further investigate the underlying genetic mechanisms, the 

likelihood of being a case pair was estimated for each MFG combination. The seven 

possible MFG combinations were partitioned into various risk groups according to their 

likelihoods of disease, as exemplified in method section. For simplicity, the risk group with 

the lowest likelihood of disease was used as reference group. The odds ratios (ORs), 

corresponding 95% confidence intervals and p-values were empirically estimated by using 

100 bootstrap samples. The results are summarized in Table IV. All identified haplotype 

blocks had empirical p-values significant at the nominal level of 5%. We further applied the 

Storey’s q-value method to adjust for the multiple testing of 112 blocks [Storey 2002]. 

Although all 7 blocks had a false discovery rate (FDR) < = 0.25, only two blocks remained 

significant with a FDR less than 5%. These blocks were located within the glutathione S-
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transferase alpha 1 (GSTA1) and the glutamate-cysteine ligase, catalytic subunit (GCLC) 

genes. Three genetic mechanisms were observed for the identified haplotype blocks.

1) Two blocks exhibited maternal main effect only

The results are summarized in Table IV. One block with 3 SNPs was located within the 

GSTA1 gene on chromosome 6. The haplotype structure showed three highly linked SNPs, 

rs9474321, rs6917325 and rs10948723, covering an 18 KB region (Figure 1A). Further, the 

MFG combinations were partitioned into two risk groups. Four MFG combinations had 

relatively lower likelihood of disease, and were used as reference group. We denoted the 

maternal/fetal genotype combinations in the reference group as R1 = {HH / HH; HH / HH̅; 

H̅H̅ / HH̅; H̅H̅ / H̅H̅}. Compared to the reference group, three other MFG combinations had 

an elevated likelihood of disease, denoted as R2 = {HH̅ / HH; HH̅ / HH̅; HH̅ / H̅H̅}. The 

corresponding OR between R1 and R2 was estimated to be 1.50 (95% CI: 1.18, 1.89). In 

such a scenario, the maternal haplotype H showed dominance effect that will increase the 

risk of disease, while the risk of disease was unchanged by fetal genotypes (Figure 1B). 

Similarly, our results show that a maternal haplotype of 6 SNPs within the gene SOD2 

(Figure 2) may have an additive effect that increases the risk of disease.

2) Two blocks exhibited fetal main effect only

Two blocks were located within gene MTRR and AHCYL2, comprising 2 and 7 SNPs, 

respectively. The results are summarized in Table IV. For both blocks, the MFG 

combinations can be partitioned into three risk groups, according to the fetal genotypes. In 

each block, a fetal haplotype H showed an additive effect that was protective of the disease. 

The disease risk increased as the copy of haplotype decreased in the fetal genome, and was 

unchanged with maternal genotypes. We illustrated the pattern in Figure 3–4.

3) Three blocks exhibited MFG interaction effect

Three blocks were identified with MFG interaction effect (i.e. iaa, iad, ida, idd ≠ 0). These 

three blocks were located within genes GCLC, RFC1 and GSTM3, respectively on 

chromosome 6, 4, and 1. The results were summarized in Table IV. The block within gene 

GCLC had the most complicated interactive mechanisms. This block comprised 16 SNPs, 

covering a 22 KB region on chromosome 6. Based on the estimated coefficients, the MFG 

combinations were partitioned into 5 risk groups. As illustrated in Figure 5, when maternal 

genotype was HH̅, the risk of disease was unchanged with the fetal genotypes. However, 

when maternal genotype was HH (H̅H̅), the risk of disease showed increasing (decreasing) 

pattern with the fetal genotype. This pattern of “cross-over” was an indication of the 

potential MFG interaction effect. Similarly, the interactive pattern of the blocks in gene 

RFC1 and GSTM3 is illustrated in Figure 6–7.

4. DISCUSSION

Complex diseases are increasingly seen to be caused by the interplay of multiple genetic 

variants and environmental factors through complicated mechanisms. Detecting gene-gene 

interactions has been a major difficulty in genetic association studies [Cordell 2009], and 

can be especially challenging in maternal and perinatal research. Two types of gene-gene 
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interactions are possible during pregnancy: intra-generational interaction within either 

maternal or fetal genome, and inter-generational interaction between maternal and fetal 

genomes. The inter-generational effect may lead to either conflicting or beneficial 

environment for fetal growth, which may influence the phenotypes of both mothers and 

babies [Sinsheimer, et al. 2010]. In addition, both maternal and fetal genes may have non-

interactive main effects associated with the phenotypes. The effects of maternal genes may 

influence maternal metabolites, which are associated with the risk of having a CHD-affected 

pregnancy. For example, previous studies by our research group and others have described 

an association between gene MTHFR polymorphisms and maternal homocysteine levels that 

affect the risk of congenital anomalies [Botto and Yang 2000; Hobbs, et al. 2006]. 

Meanwhile, the correlation between maternal and fetal genomes imposes great difficulties 

on the statistical analyses to differentiate maternal, fetal and MFG interaction effects. In this 

study, we adopt a haplotype-based method, which utilizes a logistic regression framework 

with adaptive LASSO. This method serves to estimate maternal, fetal and MFG interaction 

effects, and allows modeling of multiple SNPs within a haplotype block simultaneously, 

thus reducing the burden of multiple testing. Using this method to examine the association 

between haplotypes in 60 candidate genes and the occurrence of CTD, we identified 7 genes 

potentially associated with this birth defect. Further analyses of these results suggest that the 

identified genes may influence the phenotype through various genetic mechanisms, 

corresponding to maternal main effect, fetal main effect and MFG interaction effects.

In our result, haplotypes within two genes, the glutathione S-transferase alpha 1 (GSTA1) 

and the glutamate-cysteine ligase, catalytic subunit (GCLC), were significantly associated 

with the occurrence of CTDs at a FDR level of 5%. The haplotype within the GSTA1 gene 

exhibited a significant maternal main effect only. This gene belongs to the Glutathione S-

Transferase family, and its enzyme plays a key role in the detoxification of many toxic 

compounds [Coles and Kadlubar 2005]. A recent study in an Italian population also found 

that maternal variation in GSTA1 is associated with the risk of recurrent miscarriage 

[Polimanti, et al. 2012]. The haplotype within the GCLC gene exhibited both a significant 

maternal main effect and a significant MFG interaction effect. This gene encodes an enzyme 

for glutathione synthesis, thereby, preventing damage from oxidative stress. Variants with 

GCLC are known to make the enzyme less biologically active and lead to increased 

oxidative stress that may alter embryongenic processes. Population-based association studies 

have found an association between GCLC variants and cardiovascular events, such as 

myocardial infarction [Campolo, et al. 2007; Koide, et al. 2003].

In the current study, we also identified haplotypes in five additional genes, SOD2, GSTM3, 

MTRR, AHCYL2 and RFC1, potentially associated with CTDs, although the overall FDR for 

these 5 genes exceeded the 5% threshold. This is partly due to the limited sample size of our 

study (i.e. 331 case pairs and 875 control pairs), especially for the number of case pairs. We 

expect the power to increase in our on-going follow-up studies with larger sample sizes, 

which will improve the overall FDR. Considering the fact that most of them are functionally 

related to cardiovascular outcomes, we think that these genes may also play a role in the 

development of CTD, and are worth examining in further studies.
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A few limitations should also be noted. First, the current study only included common SNPs 

that have minor allele frequencies (MAFs) of 5% or higher. Evidence from Phase III of the 

International HapMap Project and 1,000 Genome Project have supported that rare variants 

with lower MAFs may contribute considerately to the development of complex human 

diseases [Abecasis, et al. 2012; Altshuler, et al. 2010]. However, because of their low 

MAFs, the rare variants are less easy to be phased through LD blocks, and were not included 

in the current haplotype analysis. Second, the genetic etiology of non-syndromic CTDs may 

be highly complex, involving both inter-generational and intra-generational interactions 

among genes from either different genomes or different genomic regions. Our current 

analysis only considered the inter-generational interactions between maternal and fetal genes 

from the same genomic region (LD block). While MFG interactions may also exist between 

genes from different genomic regions, investigation of these interactions will significantly 

increase the number of statistical tests and is beyond the scope of the current study.
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Figure 1. GSTA1 - Maternal Main Effect Only
Maternal haplotype H showed a dominance effect that will increase the risk of disease, while 

the risk of disease was unchanged by fetal genotypes.
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Figure 2. SOD2 - Maternal Main Effect Only
Maternal haplotype H showed an additive effect that will increase the risk of disease, while 

the risk of disease was unchanged by fetal genotypes.
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Figure 3. MTRR - Fetal Main Effect Only
Fetal haplotype H showed an additive effect that was protective of the disease, while the risk 

of disease was unchanged by maternal genotypes.
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Figure 4. AHCYL2 - Fetal Main Effect Only
Fetal haplotype H showed an additive effect that was protective of the disease, while the risk 

of disease was unchanged by maternal genotypes.
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Figure 5. GCLC – Both Maternal Main Effect and MFG Interaction Effect
Maternal and fetal genotypes showed interactive pattern in terms of disease risk, which is 

indicated by a pattern of “cross-over”. Maternal haplotype H also showed an additive effect 

that will increase the risk of disease.

Li et al. Page 17

Genet Epidemiol. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. RFC1 - MFG Interaction Effect Only
Maternal and fetal genotypes showed interactive pattern in terms of disease risk.
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Figure 7. GSTM3 - MFG Interaction Effect Only
Maternal and fetal genotypes showed interactive pattern in terms of disease risk.
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Table I

Maternal Characteristics

Case
(N=331)

Control
(N=875)

Age at delivery, mean (SD) 28.4 (6.0) 27.7 (5.9)

Mother’s race

African American 23 (7%) 88 (10%)

Caucasian 237 (72%) 620 (71%)

Hispanic 51 (15%) 124 (14%)

Others 19 (6%) 42 (5%)

Missing information 1 1

Mother’s education, N (%)

<12 years 32 (10%) 117 (13%)

High school degree or equivalent 92 (28%) 209 (24%)

1–3 years of college 89 (27%) 244 (28%)

At least 4 years of college or Bachelor degree 118 (36%) 305 (35%)

Missing information 0 0

Household income, N (%)

Less than 10 Thousand 46 (15%) 112 (14%)

10 to 30 Thousand 78 (25%) 236 (29%)

30 to 50 Thousand Dollars 63 (20%) 190 (23%)

More than 50 Thousand 128 (41%) 285 (35%)

Missing information 16 52

Folic acid supplementation, N (%)

Unexposed 159 (48%) 372 (43%)

Exposed 172 (52%) 503 (57%)

Missing information 0 0

Alcohol consumption, N (%)

Unexposed 247 (75%) 681 (78%)

Exposed 84 (25%) 191 (22%)

Missing information 0 3

Cigarette smoking, N (%)

Unexposed 264 (80%) 720 (82%)

Exposed 66 (20%) 154 (18%)

Missing information 1 1

Maternal BMI, N (%)

Underweight (BMI <18.5) 13 (4%) 35 (4%)

Normal weight (18.5 <=BMI <25) 165 (51%) 462 (54%)

Overweight (25 <=BMI <30) 81 (25%) 194 (23%)

Obese (>=30) 63 (20%) 158 (19%)

Missing information 9 26

No significant differences were found between cases and controls at 5% level
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Table II

Numerical Notations for Maternal Fetal Genotype Combinations

MFG
Fetal Diplotype

HH HH̅ H̅H̅

Maternal Diplotype

HH 11 12 --a

HH̅ 21 22 23

H̅H̅ --a 32 33

a
Combination not possible under Mendelian transmission
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